Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.754
Filtrar
1.
J Neurodev Disord ; 16(1): 16, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632525

RESUMO

BACKGROUND: Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment. Enzyme replacement therapy, gene therapy, and bone marrow transplant have all shown efficacy in the MPS IIIB model systems. A ubiquitous finding across rodent models of lysosomal storage diseases is that the best treatment outcomes resulted from intervention prior to symptom onset. Therefore, the aim of the current study was to identify early markers of disease in the MPS IIIB mouse model as well as examine clinically-relevant behavioral domains not yet explored in this model. METHODS: Using the MPS IIIB mouse model, we explored early developmental trajectories of communication and gait, and later social behavior, fear-related startle and conditioning, and visual capabilities. In addition, we examined brain structure and function via magnetic resonance imaging and diffusion tensor imaging. RESULTS: We observed reduced maternal isolation-induced ultrasonic vocalizations in MPS IIIB mice relative to controls, as well as disruption in a number of the spectrotemporal features. MPS IIIB also exhibited disrupted thermoregulation during the first two postnatal weeks without any differences in body weight. The developmental trajectories of gait were largely normal. In early adulthood, we observed intact visual acuity and sociability yet a more submissive phenotype, increased aggressive behavior, and decreased social sniffing relative to controls. MPS IIIB mice showed greater inhibition of startle in response to a pretone with a decrease in overall startle response and reduced cued fear memory. MPS IIIB also weighed significantly more than controls throughout adulthood and showed larger whole brain volumes and normalized regional volumes with intact tissue integrity as measured with magnetic resonance and diffusion tensor imaging, respectively. CONCLUSIONS: Together, these results indicate disease markers are present as early as the first two weeks postnatal in this model. Further, this model recapitulates social, sensory and fear-related clinical features. Our study using a mouse model of MPS IIIB provides essential baseline information that will be useful in future evaluations of potential treatments.


Assuntos
Mucopolissacaridose III , Humanos , Animais , Adulto , Criança , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Imagem de Tensor de Difusão , Encéfalo , Modelos Animais de Doenças , Resultado do Tratamento
2.
Indian J Pediatr ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639861

RESUMO

Storage disorders are a group of inborn errors of metabolism caused by the defective activity of lysosomal enzymes or transporters. All of these disorders have multisystem involvement with variable degrees of neurological features. Neurological manifestations are one of the most difficult aspects of treatment concerning these diseases. The available treatment modalities for some of these disorders include enzyme replacement therapy, substrate reduction therapy, hematopoietic stem cell transplantation (HSCT) and the upcoming gene therapies. As a one-time intervention, the economic feasibility of HSCT makes it an attractive option for treating these disorders, especially in lower and middle-income countries. Further, improvements in peri-transplantation medical care, better conditioning regimens and better supportive care have improved the outcomes of patients undergoing HSCT. In this review, we discuss the current evidence for HSCT in various storage disorders and its suitability as a mode of therapy for the developing world.

3.
Genet Med ; : 101144, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38641994

RESUMO

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using ACMG criteria resulted in the upgrade of six and the submission of four new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial MRIs demonstrated progressive brain atrophy, more pronounced in late infantile patients. MR spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile than juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.

4.
Orphanet J Rare Dis ; 19(1): 165, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637893

RESUMO

BACKGROUND: Pregnancy and delivery outcomes in women with Fabry disease are not well described. METHODS: Retrospective cohort-study of women with Fabry disease in Austria using a specific questionnaire and the Austrian Mother-Child Health Passport. RESULTS: Out of a total of 44 enrolled women (median age at study entry 44 years, p25: 30, p75: 51), 86.4% showed signs and symptoms of Fabry disease with an increase in pain burden during pregnancy, primarily in women with moderate pain before pregnancy. Thirty-two of 44 women with Fabry disease reported a total of 70 pregnancies (median age at first pregnancy 24 years, p25: 21, p75: 31), 61 (87.1%) of which resulted in 64 live births including 3 sets of twins, six miscarriages (8.6%) in five women, and three induced abortions (4.3%) in two women. Risk factors for poor maternal and foetal outcomes during pregnancy, overrepresented in our cohort as compared to the general population, were hypertension (n = 10, 16.4%), proteinuria (n = 17, 27.9%) and smoking (n = 24, 39.3%). Preeclampsia was reported in 7 pregnancies (11.5%). Fifty-one (79.7%) children were born at term and 13 (20.3%) were preterm (including one neonatal death), with a median gestational age of 39 weeks (p25: 38, p75: 40) and delivery by C-section in 15 pregnancies (24.6%). Thirteen (20.3%) children presented with low birth weight and 18 (28.1%) were small for their gestational age. In comparison to global and national data-sets, preeclampsia, prematurity, low birth weight, being small for their gestational age as well as inpatient stay were significantly more common in patients with Fabry disease. CONCLUSIONS: Our cohort-study in women with Fabry disease shows an increase of pain burden during pregnancies and clearly points to an increased risk for preeclampsia, prematurity, and neonates small for gestational age. With a substantial number of high-risk pregnancies, neonatal outcomes are somewhat worse in Fabry disease than in the general public. Thus, we provide valuable data enabling informed decision-making in pregnancy counselling for Fabry disease.


Assuntos
Doença de Fabry , Pré-Eclâmpsia , Gravidez , Recém-Nascido , Humanos , Feminino , Adulto , Adulto Jovem , Lactente , Resultado da Gravidez/epidemiologia , Áustria/epidemiologia , Estudos Retrospectivos , Doença de Fabry/epidemiologia , Dor
5.
J Neurol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564053

RESUMO

Metachromatic leukodystrophy (MLD) is a neuro-metabolic disorder due to arylsulfatase A deficiency, causing demyelination of the central and peripheral nervous system. Hematopoietic cell transplantation (HCT) can provide a symptomatic and survival benefit for pre-symptomatic and early symptomatic patients by stabilizing CNS disease. This case series, however, illustrates the occurrence of severely progressive polyneuropathy shortly after HCT in two patients with late-infantile, one with late-juvenile, and one with adult MLD, leading to the inability to walk or sit without support. The patients had demyelinating polyneuropathy before HCT, performed at the ages of 2 years in the first two patients and at 14 and 23 years in the other two patients. The myeloablative conditioning regimen consisted of busulfan, fludarabine and, in one case, rituximab, with anti-thymocyte globulin, cyclosporine, steroids, and/or mycophenolate mofetil for GvHD prophylaxis. Polyneuropathy after HCT progressed parallel with tapering immunosuppression and paralleled bouts of infection and graft-versus-host disease (GvHD). Differential diagnoses included MLD progression, neurological GvHD or another (auto)inflammatory cause. Laboratory, electroneurography and pathology investigations were inconclusive. In two patients, treatment with immunomodulatory drugs led to temporary improvement, but not sustained stabilization of polyneuropathy. One patient showed recovery to pre-HCT functioning, except for a Holmes-like tremor, for which a peripheral origin cannot be excluded. One patient showed marginal response to immunosuppressive treatment and died ten months after HCT due to respiratory failure. The extensive diagnostic and therapeutic attempts highlight the challenge of characterizing and treating progressive polyneuropathy in patients with MLD shortly after HCT. We advise to consider repeat electro-neurography and possibly peripheral nerve biopsy in such patients. Nerve conduction blocks, evidence of the presence of T lymphocytes and macrophages in the neuronal and surrounding nerve tissue, and beneficial effects of immunomodulatory drugs may indicate a partially (auto)immune-mediated pathology. Polyneuropathy may cause major residual disease burden after HCT. MLD patients with progressive polyneuropathy could potentially benefit from a more intensified immunomodulatory drug regime following HCT, especially at times of immune activation.

6.
Am J Med Genet A ; : e63630, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647370

RESUMO

Gaucher disease (GD) is an autosomal recessively inherited lysosomal storage disorder caused by biallelic pathological variants in the GBA1 gene. Patients present along a broad clinical spectrum, and phenotypes are often difficult to predict based on genotype alone. The variant R463C (p.Arg502Cys) exemplifies this challenge. To better characterize its different clinical presentations, we examined the records of 25 current and historical patients evaluated at the National Institutes of Health. Nine patients were classified as GD1, 14 were classified as GD3, and two had an ambiguous diagnosis between GD1 and GD3. In addition, we reviewed the published literature in PubMed and Web of Science through December 2023, identifying 62 cases with an R463C variant from 18 countries. Within the NIH cohort, the most common second variants were N370S (p.N409S) and L444P (p.L483P). R463C/L444P was encountered in patients with GD1 and GD3 in both the NIH cohort and worldwide. In the literature, R463C/R463C was also reported in both GD1 and GD3, although sparse phenotypic information was shared. Often the phenotype reflected what might be predicted for the second mutant allele. This diversity of phenotypes emphasizes the need for longitudinal follow-up to assess symptom development and neurological involvement.

7.
Cell Rep ; 43(5): 114117, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38630590

RESUMO

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.

8.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612616

RESUMO

Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Proteostase , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Dobramento de Proteína , Proteólise
9.
Int J Biol Sci ; 20(6): 2111-2129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617529

RESUMO

Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme ß-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , RNA Mensageiro/genética , Vacinas contra COVID-19 , Qualidade de Vida
10.
Cureus ; 16(3): e55883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595885

RESUMO

Niemann-Pick disease (NPD) encompasses a minimum of three lysosomal storage diseases, all of which are inherited in an autosomal recessive manner. Acid sphingomyelinase (ASM) deficiency is the cause of NPD types A and B. ASM is the enzyme that hydrolyzes the sphingolipid sphingomyelin. An 18-month-old patient with progressive painless abdominal distension with organomegaly and neurological deficits presented to our hospital. Brain imaging and laboratory findings did not show anything, but there was a millstone growth delay. The diagnosis of NPD type A was confirmed by a genetic examination, which revealed a twofold change on chromosome 11p15.4 in the region encoding the sphingomyelin phosphodiesterase-1 (SMPD1) gene. The patient was followed up with no specific treatment, and signs of respiratory infections were later reported.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38624096

RESUMO

OBJECTIVES: Gaucher Disease (GD) is a lysosomal storage disease caused by glucocerebrosidase (GCase) enzyme deficiency. Gaucher cells transformed from the macrophages by progressive sphingolipid accumulation and infiltrate bone marrow, spleen, liver, and other organs. The accumulation of substrate causes inflammation, compromised cellular homeostasis, and disturbed autophagy. It has been hypothesized that this proinflammatory state of GD leads cytokines and chemokines release. As a result of inflammatory process, the cellular dysfunction caused by disruption of cellular signaling, organelle dysfunction, or autoimmune antibodies may affect endocrine profile of GD patients such as hormone levels, lipid profile, and bone mineral density status. METHODS: A total of 13 patients confirmed to have GD, 12 non-neuronopathic type and one subacute neuronopathic type, were enrolled in our study. RESULTS: The median treatment duration in the enzyme therapy was 13.33 years (9-26 years). At least one endocrinological abnormality was detected in blood tests of nine patients. Hyperinsulinism was the most common finding although fasting blood glucose levels HgbA1c levels were normal in all patients. Two patients had osteopenia, and osteoporosis was detected in two patients. Low HDL levels were detected in six patients, but HDL levels below 23 mg/dL associated with disease severity have been detected in two patients who have not receiving enzyme replacement therapy. None of patients had thyroidal dysfunction. CONCLUSIONS: This study had revealed endocrinological abnormalities in GD patients that have not led any severe morbidity in our patients. However, thyroid hormone abnormalities, insulin resistance, or lipid profile abnormalities may cause unpredictable comorbidities. Endocrinological assessment in GD patients in routine follow-up may prevent possible clinical manifestation in long term as well as can define efficacy of ERT on endocrine abnormalities.

12.
J Clin Med ; 13(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38592278

RESUMO

Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.

13.
Mol Ther ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582963

RESUMO

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.

14.
JIMD Rep ; 65(2): 124-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444576

RESUMO

Lysosomal storage disorders (LSDs) are predominantly enzyme deficiencies leading to substrate accumulation, causing progressive damage to multiple organs. To date, a crucial part of diagnosing LSDs is measuring enzymatic activity in leucocytes, plasma, or dried blood spots (DBS). Here, we present results from a proof-of-principle study, evaluating an innovative digital microfluidics (DMF) platform, referred to as SEEKER®, that can measure the activity of the following four lysosomal enzymes from DBS: α-L-iduronidase (IDUA) for mucopolysaccharidosis I (MPS I), acid α-glucosidase (GAA) for Pompe disease, ß-glucosidase (GBA) for Gaucher disease, and α-galactosidase A (GLA) for Fabry disease. Over 900 DBS were analysed from newborns, children, and adults. DMF successfully detected known patients with MPS I, Pompe disease, and Gaucher disease, and known males with Fabry disease. This is the first demonstration of this multiplexed DMF platform for identification of patients with LSDs in a specialised diagnostic enzyme laboratory environment. We conclude that this DMF platform is relatively simple, high-throughput, and could be readily accommodated into a specialised laboratory as a first-tier test for MPS I, Pompe disease, and Gaucher disease for all patients, and Fabry disease for male patients only.

15.
JIMD Rep ; 65(2): 63-84, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444574

RESUMO

Canadian patients and families affected by rare genetic lysosomal storage diseases (LSDs) suffer from numerous challenges related to disease management, including issues navigating healthcare and social support services, access to orphan drugs, and intensive treatment regimens. These challenges significantly impact people's quality of life, yet they remain obscure and have not been the subject of comprehensive analysis. Thus, we conducted qualitative interviews with Canadian patients and caregivers living with LSDs to advance current understanding of their experiences with rare-disease (RD) management and health systems navigation to support patient-focused RD policies and programs and improve the health outcomes of the 2.8 million Canadians affected by RDs. This study employed a qualitative descriptive research design with inductive thematic analysis. The study data were collected using semi-structured interviews. Thirty Canadian participants were interviewed in person or remotely via video chat to allow for an interactive discussion and the acquisition of rich data related to the insights and perceptions of people with LSDs. Between April and November 2019, 30 participants (16 patients and 14 caregivers) with experiences with nine types of LSDs and living in seven Canadian provinces were interviewed. Five themes were identified using comprehensive thematic analysis. These themes were the complexity of the diagnosis process; navigation of healthcare systems; psychological, social, and financial implications of LSDs; access to social support services; and access to orphan drugs. Our findings reveal that patients' access to appropriate healthcare and social services is subject to significant delays and lacks care coordination. The process of accessing orphan drugs in Canada is extremely complex and convoluted. The study results also illuminate experiences of RD stigma when navigating healthcare and social support systems. Our study offers new insights into the complex nature and extensive needs of Canadians with LSDs that are currently unmet. The management of these complex diseases requires holistic patient care and support beyond having access to orphan drugs. Our findings highlight the importance of bridging existing gaps between health and social care for RD patients. Policymakers should utilize these results when developing the forthcoming national RD strategy.

16.
Front Cardiovasc Med ; 11: 1367108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450370

RESUMO

Background: Pompe disease (PD) is a rare, progressive autosomal recessive lysosomal storage disorder that directly impacts mitochondrial function, leading to structural abnormalities and potentially culminating in heart failure or cardiogenic shock. The clinical course and molecular mechanisms of the disease remain incompletely understood. Methods: We performed a retrospective analysis to examine the clinical manifestations, genetic traits, and the relationship between PD and mitochondrial function in a pediatric patient. This comprehensive evaluation included the use of ultrasound echocardiograms, computed tomography (CT) scans, electrocardiograms, mutagenesis analysis, and structural analysis to gain insights into the patient's condition and the underlying mechanisms of PD. For structural analysis and visualization, the structure of protein data bank ID 5KZX of human GAA was used, and VMD software was used for visualization and analysis. Results: The study revealed that a 5-month-old male infant was admitted due to fever, with physical examination finding abnormal cardiopulmonary function and hepatomegaly. Laboratory tests and echocardiography confirmed heart failure and hypertrophic cardiomyopathy. Despite a week of treatment, which normalized body temperature and reduced pulmonary inflammation, cardiac abnormalities did not show significant improvement. Further genetic testing identified a homozygous mutation c.2662G>T (p.E888) in the GAA gene, leading to a diagnosis of Infantile-Onset Pompe Disease (IOPD). Conclusions: Although enzyme replacement therapy can significantly improve the quality of life for patients with PD, enhancing mitochondrial function may represent a new therapeutic strategy for treating PD.

17.
Diagnostics (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472963

RESUMO

Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to ß-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in the brain and other organs. In total, two diseases have been linked to this gene mutation: Morquio type B and Gangliosidosis. The most frequent clinical manifestations include dysmorphic facial features, nervous and skeletal systems abnormalities, hepatosplenomegaly, and cardiomyopathies. The correct diagnosis of GM1 is a challenge due to the overlapping clinical manifestation between this disease and others, especially in infants. Therefore, in the current study we present the case of a 3-month-old male infant, admitted with signs and symptoms of respiratory distress alongside rapid progressive heart failure, with minimal neurologic and skeletal abnormalities, but with cardiovascular structural malformations. The atypical clinical presentation raised great difficulties for our diagnostic team. Unfortunately, the diagnostic of GM1 was made postmortem based on the DBS test and we were able to correlate the genotype with the unusual phenotypic findings.

18.
Can J Neurol Sci ; : 1-9, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532569

RESUMO

BACKGROUND: Mucolipidosis type IV (MLIV) is a rare, progressive lysosomal storage disorder characterized by severe intellectual disability, delayed motor milestones and ophthalmologic abnormalities. MLIV is an autosomal recessive disease caused by mutations in the MCOLN1 gene, encoding mucolipin-1 which is responsible for maintaining lysosomal function. OBJECTIVES AND METHODS: Here, we report a family of four Iranian siblings with cognitive decline, progressive visual and pyramidal disturbances, and abnormal movements manifested by severe oromandibular dystonia and parkinsonism. MRI scans of the brain demonstrated signal abnormalities in the white matter and thinning of the corpus callosum. RESULTS AND CONCLUSIONS: Whole-exome sequencing identified a novel homozygous variant, c.362C > T:p. Thr121Met in the MCOLN1 gene consistent with a diagnosis of MLIV. The presentation of MLIV may overlap with a variety of other neurological diseases, and genetic analysis is an important strategy to clarify the diagnosis. This is an important point that clinicians should be familiar with. The novel variant c.362C > T:p. Thr121Met herein described may be related to a comparatively older age at onset. Our study also expands the clinical spectrum of MLIV associated with the MCOLN1 variants and introduces a novel likely pathogenic variant for testing in MLIV cases that remain unresolved.

19.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447580

RESUMO

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Assuntos
Glicoproteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Criança , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lisossomos/metabolismo , Fosfolipases/metabolismo , Glicerofosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
20.
Biomedicines ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38540192

RESUMO

Gaucher disease is an inherited disorder in which there is a deficiency of the enzyme glucocerebrosidase, which leads to the accumulation of glucosylceramide. Although much scientific evidence is now available, there is still limited data on the impact on the different life stages of women with this disease. Among other alterations, a delay in menarche has been described, although it has not been related to fertility problems. Menorrhagia is relatively frequent, being related to the presence of thrombocytopenia, thrombocytopathies or coagulation disorders. On the other hand, pregnancy planning is an increasingly frequent concern. All patients should undergo genetic counseling, and it is important to monitor the appearance or worsening of organomegaly, bone and hematologic abnormalities to establish clinical and therapeutic recommendations. Management during the puerperium will depend on the evolution of gestation, and, during the lactation period, the potential appearance of bone complications should be assessed. An early onset of menopause, compared to the general population, has also been described, which may accelerate the development of osteopenia. Finally, although the usual screening protocols for neoplasms are currently being performed, it is recommended to watch for early signs of liver or renal neoplasms when examining the results of imaging tests performed during evaluations for this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...